Accumulation of neurotoxic thioether metabolites of 3,4-(+/-)-methylenedioxymethamphetamine in rat brain.
نویسندگان
چکیده
The serotonergic neurotoxicity of 3,4-(+/-)-methylenedioxymethamphetamine (MDMA) appears dependent upon systemic metabolism because direct injection of MDMA into the brain fails to reproduce the neurotoxicity. MDMA is demethylenated to the catechol metabolite N-methyl-alpha-methyldopamine (N-Me-alpha-MeDA). Thioether (glutathione and N-acetylcysteine) metabolites of N-Me-alpha-MeDA are neurotoxic and are present in rat brain following s.c. injection of MDMA. Because multidose administration of MDMA is typical of drug intake during rave parties, the present study was designed to determine the effects of multiple doses of MDMA on the concentration of neurotoxic thioether metabolites in rat brain. Administration of MDMA (20 mg/kg s.c.) at 12-h intervals for a total of four injections led to a significant accumulation of the N-Me-alpha-MeDA thioether metabolites in striatal dialysate. The area under the curve (AUC)(0-300 min) for 5-(glutathion-S-yl)-N-Me-alpha-MeDA increased 33% between the first and fourth injections and essentially doubled for 2,5-bis-(glutathion-S-yl)-N-Me-alpha-MeDA. Likewise, accumulation of the mercapturic acid metabolites was reflected by increases in the AUC(0-300 min) for both 5-(N-acetylcystein-S-yl)-N-Me-alpha-MeDA (35%) and 2,5-bis-(N-acetylcystein-S-yl)-N-Me-alpha-MeDA (85%), probably because processes for their elimination become saturated. Indeed, the elimination half-life of 5-(N-acetylcystein-S-yl)-N-Me-alpha-MeDA and 2,5-bis-(N-acetylcystein-S-yl)-N-Me-alpha-MeDA increased by 53 and 28%, respectively, between the first and third doses. Finally, although the C(max) values for the monothioether conjugates were essentially unchanged after each injection, the values increased by 38 and approximately 50% for 2,5-bis-(glutathion-S-yl)-N-Me-alpha-MeDA and 2,5-bis-(N-acetylcystein-S-yl)-N-Me-alpha-MeDA, respectively, between the first and fourth injections. The data indicate that neurotoxic metabolites of MDMA may accumulate in brain after multiple dosing.
منابع مشابه
Serotonergic neurotoxic thioether metabolites of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"): synthesis, isolation, and characterization of diastereoisomers.
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a synthetic recreational drug of abuse that produces long-term toxicity associated with the degeneration of serotonergic nerve terminals. In various animal models, direct administration of MDMA into the brain fails to reproduce the serotonergic neurotoxicity, implying a requirement for the systemic metabolism and bioactivation of MDMA. Catech...
متن کاملNeurotoxic thioether adducts of 3,4-methylenedioxymethamphetamine identified in human urine after ecstasy ingestion.
3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy) is a widely misused synthetic amphetamine derivative and a serotonergic neurotoxicant in animal models and possibly humans. The underlying mechanism of neurotoxicity involves the formation of reactive oxygen species although their source remains unclear. It has been postulated that MDMA-induced neurotoxicity is mediated via the formation of bior...
متن کاملGlial cell response to 3,4-(+/-)-methylenedioxymethamphetamine and its metabolites.
3,4-(±)-Methylenedioxymethamphetamine (MDMA) and 3,4-(±)-methylenedioxyamphetamine (MDA), a primary metabolite of MDMA, are phenylethylamine derivatives that cause serotonergic neurotoxicity. Although several phenylethylamine derivatives activate microglia, little is known about the effects of MDMA on glial cells, and evidence of MDMA-induced microglial activation remains ambiguous. We initiall...
متن کاملIn vitro metabolism of 3,4-methylenedioxymethamphetamine in human hepatocytes.
Users of the illicit drug, 3,4-methylenedioxymethamphetamine (MDMA), show signs of neurotoxicity. However, the precise mechanism of neurotoxicity caused by use of MDMA has not yet been elucidated. Synthetic glutathione (GSH) conjugates of MDMA are transported into the brain by the GSH transporter and subsequently produce neurotoxicity. The objective of this research is to show direct evidence o...
متن کاملFurther studies on the role of metabolites in (+/-)-3,4-methylenedioxymethamphetamine-induced serotonergic neurotoxicity.
The mechanism by which the recreational drug (+/-)-3,4-methylenedioxymethamphetamine (MDMA) destroys brain serotonin (5-HT) axon terminals is not understood. Recent studies have implicated MDMA metabolites, but their precise role remains unclear. To further evaluate the relative importance of metabolites versus the parent compound in neurotoxicity, we explored the relationship between pharmacok...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 324 1 شماره
صفحات -
تاریخ انتشار 2008